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On Multi-dimensional Unstructured
Mesh Adaption

William A. Wood∗ and William L. Kleb∗

NASA Langley Research Center, Hampton, VA 23681

Anisotropic unstructured mesh adaption is developed for a truly multi-dimensional up-
wind fluctuation splitting scheme, as applied to scalar advection-diffusion. The adaption
is performed locally using edge swapping, point insertion/deletion, and nodal displace-
ments. Comparisons are made versus the current state of the art for aggressive anisotropic
unstructured adaption, which is based on a posteriori error estimates. Demonstration of
both schemes to model problems, with features representative of compressible gas dy-
namics, show the present method to be superior to the a posteriori adaption for linear
advection. The performance of the two methods is more similar when applied to non-
linear advection, with a difference in the treatment of shocks. The a posteriori adaption
can excessively cluster points to a shock, while the present multi-dimensional scheme
tends to merely align with a shock, using fewer nodes. As a consequence of this align-
ment tendency, an implementation of eigenvalue limiting for the suppression of expansion
shocks is developed for the multi-dimensional distribution scheme. The differences in the
treatment of shocks by the adaption schemes, along with the inherently low levels of
artificial dissipation in the fluctuation splitting solver, suggest the present method is a
strong candidate for applications to compressible gas dynamics.

Nomenclature
~A Flux Jacobian
Er Error estimate
~F Flux function
` Edge length
n̂ Outward unit normal
~r Position vector
S Area of a triangle
t Time
U Dependent variable
α, β Curvilinear advection speeds
ε Eigenvalue limiting parameter
~λ Advection velocity
µ Diffusion coefficient
φ Fluctuation
φξ, φη Fluctuation components
φ∗

ξ

, φ∗
η

Limited fluctuations
φ′
ξ

, φ′
η

Artificial dissipation terms
φv Diffusive fluctuation
ψ Limiter function
Υ Minimization functional
Ξ Weighting matrix
Ω General element area
~∇ Gradient operator
∆n Forward difference in iterate n

Subscripting independent variables represents differ-
entiation. Tildes indicate averaged states with Prop-
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erty U. Over-bar indicates cell-averaged value.

Introduction

HIGH-FIDELITY aerothermodynamic analyses
for hypersonic vehicles, such as the X-34, can

require up to 390 CPU hours on a Cray C-90 for
a single computational fluid dynamics (CFD) solu-
tion, even when using a modern, proven, highly-tuned
solver.1 The associated solution-adapted grids include
up to 9 million nodes. It is desired to reduce solu-
tion times by more than an order of magnitude so
as to increase the relevancy of CFD to the national
X-plane programs. Reducing the required mesh sizes,
while maintaining or improving accuracy, has been tar-
geted as a high-payoff endeavor for minimizing the
cost of computational aerothermodynamics. Funda-
mental algorithmic advances for both the flow solver
and the mesh-adaption strategy will contribute to re-
duced costs.

Solution-adaptive remeshing techniques have been
utilized with some success for hypersonic flows on
structured domains. A leader in this field is Gnoffo,2

who utilizes a spring analogy energy minimization to
align the bow shock and cluster to the boundary layer.
This approach works very well for entry forebodies, for
which it was developed, but is more difficult to apply
to complex vehicle shapes. The method also is unre-
sponsive to embedded shocks or other shock-layer flow
features.

Harvey3,4, 5 has developed a mesh adaption tech-
nique that is sensitive to shock-layer features to obtain
parabolized Navier-Stokes solutions over simple con-
figurations, e.g. cones, using a spring analogy based
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Fig. 1 Pictorial of ‘ideal’ mesh for shock discon-
tinuity (left) and mesh resulting from curvature-
based clustering (right).

on Gnoffo’s work. Unfortunately, defining relative
clustering strengths for various flow features proved
difficult, and a damaging lack of robustness is shown
for three-dimensional leeside flowfields.4

Mesh adaption on unstructured domains offers a sig-
nificant benefit over structured mesh adaption—the
ability to locally insert and delete nodes. Much of
the research in this area has gone into global remesh-
ing using isotropic cells.6,7, 8, 9, 10,11 Grids composed
of (nearly) isotropic cells quickly become prohibitively
large for hypersonic applications, where the capture
of essentially one-dimensional flow features, such as
shocks, requires refinement in all three spatial dimen-
sions.

More recently, impressive results using anisotropic
elements have been reported by Habashi et
al.12,13, 14,15,16, 17 With their approach, all grid
adaptions are local operations, as opposed to global
remeshings. Highly-stretched elements are obtained,
achieved by equating the interpolation error along
each edge, again using a spring analogy minimiza-
tion. The clustering is driven by a posteriori error
estimation based on second derivatives of the solu-
tion. This sort of clustering is intended to reduce
the interpolation error in a piecewise-linear data
representation,18,19 but is not necessarily driven by
the flow physics, and can lead to excessive clustering
or conflicting requirements in certain regions, such as
a bow shock or stagnation point. Figure 1 presents
an illustrative pictorial based on the results of Ait-
Ali-Yahia et al,20 where 18 cells were driven into the
bow shock by gradient based clustering. A shock is
pictured on the left side of the figure with an ideal
mesh for a three-point stencil. On the right-hand
side is a mesh dictated by curvature-based clustering,
clearly containing more points than necessary.

Roe21,22 has applied the concept of local node move-
ments to a scalar advection problem using a fluctua-
tion splitting solver. His analysis reveals that a char-
acteristic mesh results, with far fewer points required
than curvature clustering would imply. His method
is based on the minimization of an objective func-
tion formed by taking derivatives of the fluctuation
splitting scheme. A differentiable high-resolution lin-
ear scheme, which in general cannot be monotonic,23

was chosen. For a complex solution field or for sys-
tems of equations it may not be possible to achieve a
perfectly-aligned characteristic mesh, in which case the

non-monotonic property would most likely be detri-
mental or even fatal to the solution. It is not clear
how to extend the differentiability requirement to a
high-resolution, non-linear monotonic scheme.

The current study seeks to borrow from the full suite
of aggressive anisotropic unstructured mesh adaptions
that have been developed for traditional finite vol-
ume or finite element methods, and to apply them in
novel ways to the inherently multi-dimensional fluc-
tuation splitting distribution scheme. Prior work24,25

has shown fluctuation splitting can deliver greater ac-
curacy on coarser meshes than finite volume when
applied to model problems with features representative
of those present in hypersonic flows. A mesh adap-
tion strategy developed in conjunction with fluctuation
splitting that is robust and general yet does not overly
cluster to shocks could contribute significantly to low-
ering the cost of computational aerothermodynamics.

This paper judges the potential of such an adaption
strategy for a fluctuation splitting solver by compar-
ing its performance versus a state-of-the-art solution-
adaptive strategy, based on a posteriori error estimates
for a finite volume solver, as applied to several scaler
model problems representative of some of the features
present in compressible gas dynamics. The govern-
ing equations are stated along with a brief outline of
the finite volume and fluctuation splitting discretiza-
tions. Descriptions of the a posteriori error estimation
and the basic local adaption techniques are followed
by details of the adaption strategy developed for the
present study, constructed as a series of minimization
operations on the cell fluctuations. Applications to
linear advection, non-linear advection, and advection-
diffusion lead to conclusions about the suitability of
the present method for extension to compressible gas
dynamics.

Governing Equations
The scalar advection-diffusion equation,

Ut + ~∇· ~F = ~∇·(µ~∇U) (1)

is considered in two spatial dimensions on triangu-
lated unstructured domains. The physical domain is
chosen to be the unit square in the second quadrant.
Steady-state solutions are sought through pseudo-time
relaxation.

A linear equation is obtained with,

~F = ~λU (2)

while non-linear advection is obtained with,

~F = (
1
2
U2, U) , µ = 0 (3)

Finite Volume
The finite volume discretization is constructed as an

edge-based implementation of the approximate Rie-
mann solver due to Roe.26 The numerical flux at a
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median-dual control-volume face is,

1
2

(
~Fin + ~Fout

)
·n̂− 1

2
| ~̃A·n̂|(Uout − Uin) (4)

with the flux Jacobian defined,

~̃A =
∂ ~F

∂U
(5)

Node-based limited reconstruction for second-order ac-
curacy follows Barth,27

Uface = U0 + ψ(~∇U)0 ·~r (6)

Diffusion terms are discretized as a finite element
distribution such that the contribution to node i of a
triangle is given by,

φvi = − µ̄`i
4S

3∑
j=1

Uj`j n̂j ·n̂i (7)

with the convention that edge i is opposite to node i.

Fluctuation Splitting
The fluctuation splitting discretization is the multi-

dimensional upwind residual distribution scheme of
Sidilkover.28 The advective fluctuation is defined on a
triangular cell,

φ = −
∫

Ω

~∇· ~F dΩ = φξ + φη (8)

where,

φξ = α(U1 − U2), φη = β(U3 − U2) (9)

and,

α =
`1
2
~̃A·n̂1, β =

`3
2
~̃A·n̂3 (10)

The fluctuations are limited to achieve linearity preser-
vation as,

φ∗
ξ

= φξ + ψ

(
−φξ

φη

)
φη

φ∗
η

= φη − ψ
(
−φξ

φη

)
φη (11)

and artificial dissipation is introduced for upwind
monotonicity,

φ′
ξ

= sign(α)φ∗
ξ

, φ′
η

= sign(β)φ∗
η

(12)

Expansion shocks are eliminated by extending the
one-dimensional eigenvalue limiting of Harten and Hy-
men29 to multiple dimensions by searching for expan-
sions in the ξ and η directions separately. The artificial
dissipation can be recast, with Eqn. 9, as,

φ′
ξ

= |α|(U1 − U2) + sign(α)ψφη

φ′
η

= |β|(U3 − U2)− sign(β)ψφη (13)

The absolute values of the advection speeds are limited
as,

|α| =

 |α| if |α| ≥ ε(α)
α2+ε2(α)

2ε(α)
if |α| < ε(α)

(14)

and similarly for |β|. The small parameters for Eqn. 14
are obtained as,

ε(α) =
1
2

max
[
0, `1n̂1 ·( ~̃A− ~A1), `1n̂1 ·( ~A2 − ~̃A)

]
ε(β) =

1
2

max
[
0, `3n̂3 ·( ~A2 − ~̃A), `3n̂3 ·( ~̃A− ~A3)

]
(15)

The advective fluctuations are distributed to the
nodes of the triangle as,

node 1← 1
2

(φ∗
ξ

− φ′
ξ

)

node 2← 1
2

(φ∗
ξ

+ φ′
ξ

) +
1
2

(φ∗
η

+ φ′
η

)

node 3← 1
2

(φ∗
η

− φ′
η

) (16)

Diffusive terms are computed as a finite element dis-
cretization and distributed as in Eqn. 7.

Further details of the specific implementations
for both the finite volume and fluctuation splitting
schemes can be found in Ref. 25.

It will be demonstrated that fluctuation splitting
can provide exact solutions to multi-dimensional lin-
ear advection problems, Eqns. 1 and 2 with µ = 0,
on a properly aligned mesh. The counter-case, of
a poorly aligned mesh producing significant artificial
cross-diffusion, has been covered in Ref. 24.

The construction of a properly aligned mesh begins
by looking at the elemental fluctuation, Eqn. 8, which
can be written,

φ =
1
2

[(U1 − U2)`1n̂1 + (U3 − U2)`3n̂3]·~̃λ (17)

If one edge of the triangular element, without loss of
generality say edge 1 (edge 1 is opposite to node 1),
is parallel to the cellular advection velocity, then
n̂1 ·~̃λ = 0, and the fluctuation reduces to,

φ =
1
2
~̃λ·n̂3`3(U3 − U2) (18)

Now φ → 0 as U2 → U3, irrespective of the value
of U1. Since the artificial dissipation scales propor-
tionally with the cell fluctuation, the exact isentropic
solution will be captured as the fluctuation splitting
scheme converges to U2 = U3.

A mesh such that each cell has one edge aligned with
its averaged advection velocity is analogous to a char-
acteristic mesh. Unfortunately, this edge-alignment
concept will not, in general, produce an exact solution
in the presence of physical diffusion because the correct
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result will typically be U2 6= U3 even if edge 1 is aligned
with ~̃λ. Additionally, extensions to systems possessing
multiple or imaginary characteristics are difficult to
conceive.

Curvature Clustering
Current state of the art for local unstructured

mesh adaption is based on a posteriori error estima-
tion.6,7, 10,11,19, 12,15,16, 17,30 The error estimates can
be derived either by looking at the leading truncation
error terms in the spatial discretization or by consider-
ing the solution interpolation error. In practice, either
approach reduces, for second-order-accurate spatial
discretizations, to a check on the curvature of the so-
lution. If isotropic cells are desired, the magnitude of
the local curvature inversely dictates the element sizes,
while for anisotropic adaption directional derivatives
can be used to stretch elements.

Habashi17 defines the a posteriori error estimate on
an edge to vary like,

|Er| ∼ `2
∣∣∣∣∂2U

∂r2

∣∣∣∣ (19)

or as “the edge length squared times the second deriva-
tive of the solution.” In the finite volume context, one
simple and efficient way to construct an edge-based
error estimate along edge 01 is,

|Er| ∼

∣∣∣∣∣ ~∇U1 · ~r01
`01
− ~∇U0 · ~r01

`01

`01

∣∣∣∣∣ `201

=
∣∣∣(~∇U1 − ~∇U0

)
·~r01

∣∣∣ (20)

Barth’s edge-based finite volume scheme, used here,
already requires the gradient computations, making
the error estimate a trivial step.

Having defined an error estimate for all edges, the
adaption strategy seeks to reduce the magnitude of the
estimates while anisotropically stretching cells to equi-
distribute the error across all edges. The adaption is
performed locally using the four basic operations: edge
swapping, point deletion, point insertion, and nodal
displacement.

One simple method to improve a mesh is to swap
edges between nodes, altering the local connectivity.
If the triangles to either side of an edge form a con-
vex quadrilateral, then that edge is a candidate to be
swapped. If the error estimate for the swapped connec-
tivity is smaller than for the current edge connectivity,
then the edge is swapped. In practice, an error thresh-
old is employed with all the local operations discussed
herein to avoid limit cycles in smooth regions of the
solution.

If all edges emanating from a node have very small
error estimates, then that node is deleted. If a given
edge has an excessively large error, then that edge is
split by adding a node at the midpoint.

The approach for moving nodes uses the spring anal-
ogy, similar to the techniques presented by Gnoffo2

and Ait-Ali-Yahia et al.20 The springs are taken to
be the mesh edges. The spring constants are the edge
error estimates. A minimization is then sought for a
potential energy formed as,∑

j

1
2
|Er|j ~r 2

0j (21)

where j represents all distance-one neighbors to node 0.
The minimum is obtained by setting the derivative to
zero, giving the requirement,∑

j

|Er|j ~r0′j = 0 (22)

where 0′ indicates the new, minimum energy position
of node 0. Holding the edge error estimate constant
during the displacement, an updated position vector
can be obtained,∑

j

|Er|j (~r0j + ~r0′0) = 0 (23)

~r00′ = −~r0′0 =

∑
j |Er|j ~r0j∑
j |Er|j

(24)

Equation 24 gives the position vector pointing from
the current location of node 0 to its adapted loca-
tion. This adapted location is an attempt to optimally
equate the scaled error estimates over all edges con-
nected to the current node.

Following the recommendations of Dompierre et al12

and Habashi et al,17 the nodal displacement technique
is used as a smoother between applications of point
insertion/deletion and edge swapping. Coupling be-
tween the solver and the mesh adaptor is maintained
by iterating the solver between adaption operations. A
complete adaption cycle consists of the following steps:

Solve on initial mesh.
Swap diagonals and iterate solver.
Move nodes and iterate solver.
Insert nodes and iterate solver.
Move nodes and iterate solver.
Delete nodes and iterate solver.
Swap diagonals and iterate solver.
Move nodes and iterate solver.

The preceding steps are repeated until convergence of
the entire process.

Fluctuation Minimization
Fluctuation splitting, being a distribution scheme,

discretizes the partial differential equation into a set
of algebraic relations for the nodal values of the depen-
dent variable. Convergence of the solver implies that
the nodal updates for U are driven to zero. However,
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the nodal updates are formed as contributions from
all surrounding cells, and the fluctuations defined on
these cells are not necessarily reduced toward zero, as
the possibility exists for positive and negative contri-
butions from neighboring cells to cancel on summation
about a node.

Recall that the fluctuation splitting artificial dissi-
pation terms, Eqn. 12, scale with the cell’s fluctuation,
and that for linear advection it is possible to eliminate
the production of artificial dissipation by using an ap-
propriately designed mesh. Explicitly adapting a mesh
to align with characteristic directions proves awkward
to translate into an algorithm, and offers limited hope
for extending to diffusive problems or systems.

An alternative tact is chosen whereby the mesh is
adapted so that the solver will minimize both the cell
fluctuations, and hence the artificial dissipation, as
well as the nodal updates. Since there are on the or-
der of twice as many cells as nodes, the fluctuations
are minimized in a least-squares sense. The advantage
of fluctuation-based, rather than characteristic-based,
adaption is that the fluctuations remain defined for
diffusive problems and systems.

Given a sub-optimal mesh and solution cor-
rupted with artificial dissipation, the present adaption
method performs a series of local operations, driven
by predictions of what the fluctuations will be on the
modified mesh. The sequence of local optimizations is
iterated to obtain globally improved solutions.

For edge swapping, the root mean square (RMS) of
the fluctuations to either side of the edge is compared
to the RMS of the fluctuations in the swapped config-
uration. If the swapped RMS is lower, then the edge
is swapped. If the fluctuations in all cells surrounding
a node are very small and the fluctuations will remain
small in the re-triangulated region without that node,
then the node is deleted. If the fluctuations in the two
cells to either side of an edge are very large, then that
edge is split by adding a node at the midpoint.

For displacing nodes, a scheme to minimize RMS
of fluctuations has been presented by Roe.21,22 The
development presented by Roe uses the same mini-
mization scheme to evolve the solution as is used to
drive the nodal positioning. That type of fluctuation
splitting solver has a central difference flavor and is
not monotonic. The present procedure incorporates
the upwind, non-linear fluctuation splitting algorithm
of Sidilkover into some of the mesh movement strate-
gies of Roe.

At a given node, the nodal displacement is computed
as a first step and then the solution is updated at the
new nodal location via a local point-implicit inversion.
In this manner a global mesh movement sweep can be
accomplished in conjunction with a single Gauß-Seidel
iteration of the solver. In this section the current node
to be moved is globally numbered node i. Within each
triangular element the nodes are locally numbered 1–3.

Derivatives in y are omitted when they exactly follow
from the derivatives in x.

The functional to be minimized is defined at the
node as a sum of contributions from all cells surround-
ing the node (equivalent to Eqn. 13, p. 248 in Ref. 22),

Υi =
1
2

∑
T

ΞTφ
2
T (25)

for all triangles T containing node i. The weight-
ing factor, ΞT, is a positive scalar, generalizing to a
symmetric, positive definite matrix for systems. The
functional is thus a sum of positive semi-definite con-
tributions from triangles containing the current node.

The derivative of Υ with respect to a nodal coordi-
nate is,

∂Υi

∂xi
=
∑

T

(
φ2

T

2
∂ΞT

∂xi
+ ΞTφT

∂φT

∂xi

)
(26)

Note that the derivatives in Eqn. 26 represent the
change in solution values as the discrete mesh is per-
turbed, and as such are to be interpreted in the context
of variational calculus, and not as spatial gradients ac-
cording to the more-familiar multi-variable calculus.

The minimization of Υ can be performed using a
fixed-point iteration to force the derivatives to zero,

xn+1
i = xni −

∂Υ
∂xi

, ∆nxi = − ∂Υ
∂xi

(27)

Equation 27 can be combined with Eqn. 26 in the form
of a distribution method of steepest descent,

∆nxi ← −
φ2

T

2
∂ΞT

∂xi
− ΞTφT

∂φT

∂xi
(28)

Convergence can be enhanced over the fixed-point
iteration by using a Newton scheme. Expanding the
gradient in an approximate Taylor series,

0 =
∂Υ
∂xi

∣∣∣∣n+1

' ∂Υ
∂xi

∣∣∣∣n + ∆nxi
∂

∂xi

(
∂Υ
∂xi

∣∣∣∣n
+ ∆nyi

∂

∂yi

(
∂Υ
∂xi

∣∣∣∣n (29)

0 =
∂Υ
∂yi

∣∣∣∣n+1

' ∂Υ
∂yi

∣∣∣∣n + ∆nxi
∂

∂xi

(
∂Υ
∂yi

∣∣∣∣n
+ ∆nyi

∂

∂yi

(
∂Υ
∂yi

∣∣∣∣n (30)

leading to the form,

∆n

{
xi

yi

}
= −

 ∂2Υ
∂x2
i

∂2Υ
∂xi∂yi

∂2Υ
∂xi∂yi

∂2Υ
∂y2
i

−1{
∂Υ
∂xi
∂Υ
∂yi

}
(31)

In Ref. 21, Roe suggests neglecting the off-diagonal
terms in Eqn. 31.
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Second derivatives of the objective function are,

∂2Υ
∂x2

i

=
∑

T

[
φ2

T

2
∂2ΞT

∂x2
i

+ 2φTΞT
∂ΞT

∂xi

∂φT

∂xi
+ ΞT

(
∂φT

∂xi

)2

+ ΞTφT
∂2φT

∂x2
i

]
(32)

∂2Υ
∂xi∂yi

=
∑

T

[
φT

(
∂φT

∂xi

∂ΞT

∂yi
+
∂ΞT

∂xi

∂φT

∂yi

)
+
φ2

T

2
∂2ΞT

∂xi∂yi

+ ΞT
∂φT

∂xi

∂φT

∂yi
+ φTΞT

∂2φT

∂xi∂yi

]
(33)

Explicit expressions for the derivatives of the fluctu-
ations are grouped in the appendix. For application to
fluctuation splitting schemes other than Sidilkover’s,
only those equations in the appendix would change.

For Ξ, Roe22 chooses ΞT = 1
ST

, for which the deriva-
tives are,

∂ΞT

∂xi
= − 1

S2
T

∂ST

∂xi
(34)

∂2ΞT

∂x2
i

=
2
S3

T

(
∂ST

∂xi

)2

− 1
S2

T

∂2ST

∂x2
i

(35)

∂2ΞT

∂xi∂yi
=

2
S3

T

∂ST

∂xi

∂ST

∂yi
− 1
S2

T

∂2ST

∂xi∂yi
(36)

The area of a triangle is,

ST =
1
2

[x1(y2−y3) + x2(y3−y1) + x3(y1−y2)] (37)

leading to the derivatives,

∂ST

∂x2
=
y3 − y1

2
∂ST

∂y2
=
x1 − x3

2
(38)

and,

∂2ST

∂x2
2

=
∂2ST

∂y2
2

=
∂2ST

∂x2∂y2
= 0 (39)

This choice of weighting emphasizes fluctuations on
the smaller cells.

An alternative is to weight all cells equally, with
ΞT=1. Two other obvious choices for weighting are
ΞT=ST, emphasizing fluctuations on the larger cells,
and ΞT = 1

S2
T
, for even stronger emphasis on the

smaller cells. The derivatives for this latter case are,
with Eqn. 39,

∂ΞT

∂xi
= − 2

S3
T

∂ST

∂xi
(40)

∂2ΞT

∂x2
i

=
6
S4

T

(
∂ST

∂xi

)2

(41)

∂2ΞT

∂xi∂yi
=

6
S4

T

∂ST

∂xi

∂ST

∂yi
(42)

A complete adaption cycle follows the same steps as
outlined for curvature-clustering adaption.
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Fig. 2 Unadapted finite volume results for linear
advection of shear. Solution contours vary on (0,1)
with 0.1 increments.

Results

Four scalar test cases are considered: uniform ad-
vection, circular advection, non-linear advection, and
advection-diffusion. The emphasis of the current study
is to evaluate the performance of the adaption schemes
using only a few adaption cycles, typically 1–4, on
each case. In this manner, significant improvements in
the solutions are sought with little additional overhead
from the adaptions. It should be noted that continued
application of either adaption strategy would lead to
continually refined solutions, though at the cost of ever
increasing numbers of nodes.

Linear Advection

The first test case is for linear advection of a shear
discontinuity at 45◦, ~λ=(1,1). Inflow conditions are
U(−1, y) = 0, U(x, 0) = 1. The starting 121-node
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Fig. 3 Adapted mesh with greatly improved finite
volume solution for 45◦ shear. Solution contours
vary on (0,1) with 0.1 increments.

mesh and converged finite volume solution, using the
compressive van Albada limiter, are shown in Fig. 2.
Excessive spreading of the contour lines, indicative of
the magnitude of non-physical dissipation corrupting
the solution, is seen. The fluctuation splitting solution
on this mesh, using the Minmod limiter, is similar in
character, though somewhat less diffusive,31 to the fi-
nite volume solution.

Four cycles of the curvature-clustering adaption
with the finite volume solver result in the 103-node
mesh and solution of Fig. 3. While the adapted mesh is
highly anisotropic, a significant improvement in reso-
lution of the shear has been obtained with a 15 percent
reduction in the number of nodes.

However, a single application of only the edge-
swapping and point-deletion routines with the fluc-
tuation splitting solver results in the optimal mesh
and exact solution, Fig. 4, obtained with no interior
nodes. The six retained boundary nodes are a 95 per-
cent reduction in the number of nodes. Applying the
finite volume solver to this optimal fluctuation split-
ting mesh gives the diffused result of Fig. 5, showing
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Fig. 4 Optimal fluctuation splitting adaption and
exact solution for 45◦ shear case.
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Fig. 5 Finite volume solution on the optimal fluc-
tuation splitting mesh.
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Fig. 6 Starting mesh and converged finite volume
solution, ~λ = (y,−x). Solution contours vary on
(0,1) with 0.1 increments.

very poor containment of the leading and trailing con-
tour levels.

Circular Advection

The second case considered is for circular advection,
with a variable advection velocity of ~λ = (y,−x). The
inflow profile is U(x, 0) = 0 on x = [−1, 0.7] and
U(x, 0) = 1 on x = [−0.6, 0]. The initial mesh and
highly diffused finite volume solution on this mesh are
shown in Fig. 6. As before, the fluctuation splitting so-
lution on this mesh is similar in character, though less
diffusive than the finite volume result. Three adap-
tion cycles of the curvature clustering with the finite
volume solver are applied, leading to the mesh and so-
lution of Fig. 7. The number of nodes has increased
from 121 to 146, but the solution has been dramati-
cally improved.

For this problem, an optimal mesh can be con-
structed following the characteristic-alignment guide-
lines. Such a mesh is shown in Fig. 8, along with the
exact solution as computed by the fluctuation split-
ting solver. This mesh contains only 10 nodes. The
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Fig. 7 Converged finite volume solution and
curvature-clustered mesh after three grid-adaption
cycles, ~λ = (y,−x). Solution contours vary on (0,1)
with 0.1 increments.

finite volume solution on this mesh, Fig. 9, is clearly
far inferior to the exact fluctuation splitting solution.

In practice, though, the local adaption algorithm
for fluctuation splitting presented here is not able to
reduce the mesh to the ‘optimal’ grid for this case.
This is because each local operation is constrained
to be in the direction of a local improvement only.
In order to reduce the starting grid to the ‘optimal’
mesh, a global communication is required between
nodes to know that a local move in the non-optimal
direction will be counter-acted by changes occurring at
another node. The present method is applied to the
circular advection problem for one cycle, using four
sub-iterates of the diagonalized Newton scheme dur-
ing the nodal displacement step. The resulting mesh,
containing 70 nodes, and fluctuation splitting solution
are shown in Fig. 10. The fluctuation splitting result
is of comparable accuracy, but rougher at the edges
of the shear, to the adapted finite volume solution ob-
tained on a grid containing twice as many points.
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Fig. 8 Optimized mesh, created by hand, and ex-
act solution to circular advection problem, using
fluctuation splitting.
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Fig. 9 Finite volume solution on the optimal fluc-
tuation splitting mesh for circular advection.
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Fig. 10 Mesh and fluctuation splitting solution af-
ter one adaption cycle for circular advection. Con-
tours vary on (0,1), with 0.1 increment.

Non-linear Advection
A non-linear advection case is constructed contain-

ing a symmetric compression fan that coalesces into a
vertical shock at (− 1

2 ,
1
2 ). Centered expansion fans sit

at (-1,0) and (0,0). The inflow profile is,

U(x, 0) = −2x− 1 on x = (−1, 0)
U(−1, 0) = U(0, 0) = 0 (43)

The unadapted mesh and extremely diffused finite vol-
ume solution are shown in Fig. 11. Three full cycles
of the curvature-clustering adaption nearly double the
number of nodes to 237, yielding the mesh and solution
in Fig. 12. The solution on this mesh shows a dramatic
improvement for shock thickness, shock speed, point of
coalescence, and preservation of extremum in smooth
regions. Note, however, that there is some asymmetry
between the expansion fans toward the top of the do-
main, that the shock is not entirely straight, and that
the compression fan begins to coalesce into a shock at
y = 0.4, instead of at y = 0.5, the correct location.

The fluctuation splitting adaption scheme is also
applied for three cycles to the same problem and ini-
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Fig. 11 Initial mesh and finite volume solution for
non-linear advection case. Contours vary on (-1,1),
with 0.1 increment.

tial grid. The adapted mesh, containing 206 nodes,
and corresponding solution are shown in Fig. 13. For
this test case, there are pros and cons for both sets
of results. The adapted fluctuation splitting solution,
using 14 percent fewer nodes, exhibits slightly greater
accuracy than the adapted finite volume solution, par-
ticularly in the expansion fan symmetry and shock
coalescence point. One feature that is better resolved
in the finite volume solution is the extremum between
the compression and expansion fans on the lower right-
hand side. The fluctuation splitting shock is broader
near the coalescence point but tapers to a comparable
crispness with the finite volume result, and is a little
straighter. The fluctuation splitting shock at the out-
flow is ever so slightly offset to the right from x = −0.5,
the correct location.

The finite volume and fluctuation splitting meshes,
Figs. 12 and 13, have similar character in the expan-
sion and compression fans. The fluctuation splitting
adaption does not cluster as many points to the shock,
resulting in overall 14 percent fewer nodes. This fact
that the fluctuation splitting adaption scheme can re-
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Fig. 12 Curvature-clustered mesh and finite vol-
ume solution after three adaption cycles, non-linear
advection case. Contours vary on (-1,1), with 0.1
increment.

solve crisp shocks without excessive clustering normal
to the shock may have favorable implications when
considering fluid dynamic problems with extremely
strong shocks in the vicinity of more subtle, though
still important, features, such as an entropy layer.

Advection-Diffusion
The final case is for an advection-diffusion problem

due to Smith and Hutton.32 The advection velocity is,

~λ =
(
2y(1− x2), −2x(1− y2)

)
(44)

The inflow profile is,

U(x, 0) = 1 + tanh(20x+ 10) (45)

The diffusion coefficient is chosen to be a small con-
stant, µ = 10−3, to be representative of a high-
Reynolds-number shear. The starting mesh for this
case is an unstructured isotropic mesh containing 1928
nodes. The reference solution for this case is taken
from a fully grid-converged solution on an isotropic
mesh (20,000 nodes).24 Both the finite volume and
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Fig. 13 Mesh and fluctuation splitting solution
after three adaption cycles, non-linear advection
case. Contours vary on (-1,1), with 0.1 increment.

fluctuation splitting solvers are run on the unadapted
mesh, and the RMS difference in the outflow profiles
between these solutions on the starting mesh and the
fully-resolved solution are compared in table 1. As
usual, the fluctuation splitting solution is seen to be
more accurate than the finite volume solver on the un-
adapted mesh.

Two cycles of curvature-clustering adaption are ap-
plied, reducing the number of nodes by two-thirds to
619, while improving the RMS outflow resolution by
28 percent, also listed in table 1. One cycle of the
fluctuation splitting adaption reduces the number of
nodes to 695, while still producing some (7 percent)
improvement in accuracy.

Concluding Remarks
Current state of the art for local anisotropic un-

structured mesh adaption based on a posteriori er-
ror estimates has been implemented in an edge-based
structure in conjunction with a finite volume solver.
This type of adaption results in meshes where the node

Table 1 RMS difference of solution outflow profile
relative to reference solution.

Finite volume Fluctuation splitting

unadapted 0.0288 0.0068

adapted 0.0208 0.0063

densities are clustered to regions of high curvature in
the solution. Significant improvement in solution ac-
curacy is verified using this technique on scalar model
problems.

Recognizing the remarkable property of the dis-
cretized fluctuation splitting scheme that multi-
dimensional advection can be solved exactly when
one edge of each cell is aligned with the character-
istic direction, a different mesh adaption scheme is
proposed. While retaining the mechanics of perform-
ing only local operations, i.e. point insertion/deletion,
edge swapping, and nodal displacement, a solution-
predictive approach is chosen in favor of a posteriori
curvature clustering. The concept of aligning cell
edges with characteristic directions is generalized as
a minimization procedure to allow extension to diffu-
sion problems and systems. Extending this process
to non-linear problems led to an implementation of
eigenvalue limiting for multi-dimensional upwind dis-
tribution schemes.

It is seen that, while performing a series of local
optimizations does lead to globally improved solution
accuracy and reduced grid sizes, in general a truly
globally ‘optimal’ mesh is not achieved in a small
number of adaption cycles. However, the solution-
predictive adaption in conjunction with the fluctuation
splitting scheme does provide moderately more accu-
rate solutions on smaller meshes for comparable num-
ber of adaption cycles versus the finite volume solver
with adaption driven by error estimates.

Considering extensions to three-dimensional hyper-
sonic flow applications, perhaps the most promising
difference between the two adaption strategies lies in
their treatment of shocks. For the a posteriori adap-
tion, the number of nodes clustered to the shock grows
as the shock strength grows, which can lead to a bow
shock dominating the adaption for hypersonic prob-
lems. In contrast, the minimization of fluctuations
tends to merely align the grid with the shock, leav-
ing the points outside the shock largely unaffected.

Appendix

The variations of the cell fluctuations and the de-
pendent variable nodal values with respect to changes
in the nodal location are developed for the advec-
tive distribution scheme of Sidilkover and the diffusive
Galerkin distribution.
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Advective Fluctuations
The advective fluctuation can be manipulated from

Eqn. 17 as,

φ =
1
2

[(U2 − U3)(y1, −x1) + (U3 − U1)(y2, −x2)

+ (U1 − U2)(y3, −x3)]· ~̃A (46)

The spatial derivatives take the form,

∂φ

∂x2
=

1
2

(U1 − U3)Ãy +
3∑
j=1

Uj`j n̂j ·
∂ ~̃A

∂x2

+
3∑
j=1

`j n̂j · ~̃A
∂Uj
∂x2

 (47)

∂φ

∂y2
=

1
2

(U3 − U1)Ãx +
3∑
j=1

Uj`j n̂j ·
∂ ~̃A

∂y2

+
3∑
j=1

`j n̂j · ~̃A
∂Uj
∂y2

 (48)

The derivatives of the cell-averaged flux Jacobian
will depend upon the particular flux function. How-
ever, since ~̃A is a weighted average of three nodal
values,

∂ ~̃A

∂x2
∼ 1

3
∂ ~A2

∂x2
(49)

For uniform advection, ∂ ~̃A
∂x2

= 0. For circular advec-

tion, ∂ ~̃A
∂x2

= (0,− 1
3 ) and ∂ ~̃A

∂y2
= ( 1

3 , 0). For non-linear
problems, in general,

∂ ~̃A

∂x2
∼ 1

3
∂U2

∂x2
(50)

In keeping with the Gauß-Seidel update philosophy,
only the derivative of the solution value at the current
node is retained in the last term of Eqns. 47 and 48.
That is, if the current node is designated node 2 of
the triangle under consideration, then ∂U2

∂x2
= ∂Ui

∂xi
is

retained while ∂U1
∂x2
' ∂U3

∂x2
' 0 is assumed.

Second derivatives of the advective fluctuation with
respect to variation of a nodal location follow from
Eqns. 47 and 48, incorporating the approximation
∂U1
∂x2
' ∂U3

∂x2
' 0,

∂2φ

∂x2
2

= (U1−U3)
∂Ãy

∂x2
+`2n̂2·

∂ ~̃A

∂x2

∂U2

∂x2
+
`2
2
n̂2· ~̃A

∂2U2

∂x2
2

+
3∑
j=1

Uj
`j
2
n̂j ·

∂2 ~̃A

∂x2
2

(51)

∂2φ

∂y2
2

= (U3−U1)
∂Ãx

∂y2
+`2n̂2·

∂ ~̃A

∂y2

∂U2

∂y2
+
`2
2
n̂2· ~̃A

∂2U2

∂y2
2

+
3∑
j=1

Uj
`j
2
n̂j ·

∂2 ~̃A

∂y2
2

(52)

∂2φ

∂x2∂y2
=

1
2

[
(U3 − U1)

(
∂Ãx

∂x2
− ∂Ãy

∂y2

)

+ `2n̂2 ·

(
∂ ~̃A

∂y2

∂U2

∂x2
+
∂ ~̃A

∂x2

∂U2

∂y2

)
+ `2n̂2 · ~̃A

∂2U2

∂x2∂y2

+
3∑
j=1

Uj`j n̂j ·
∂2 ~̃A

∂x2∂y2

 (53)

Second derivatives of ~̃A are developed in an analogous
manner to its first derivatives.

Diffusive Fluctuations

Derivatives of the diffusive fluctuations take the
form,

∂φv2
∂x2

= − µ̄

4ST

( 1
µ̄

∂µ̄

∂x2
− 1
ST

∂ST

∂x2

) 3∑
j=1

Uj`j`2n̂j ·n̂2

+ `22
∂U2

∂x2
+ (x3 − x1)(U1 − U3)

]
(54)

∂φv2
∂y2

= − µ̄

4ST

( 1
µ̄

∂µ̄

∂y2
− 1
ST

∂ST

∂y2

) 3∑
j=1

Uj`j`2n̂j ·n̂2

+ `22
∂U2

∂y2
+ (y3 − y1)(U1 − U3)

]
(55)

where the assumption ∂U1
∂x2

' ∂U3
∂x2

' 0 has already
been applied. The second derivatives of the diffusive
distribution follow as,

∂2φv2
∂x2

2

= − µ̄`
2
2

4ST

∂2U2

∂x2
2

+
(

µ̄

4S2
T

∂ST

∂x2
− 1

4ST

∂µ̄

∂x2

)
·[

`22
∂U2

∂x2
+ (x3 − x1)(U1 − U3)

]
+

[
1

4µ̄ST

(
∂µ̄

∂x2

)2

− 1
4ST

∂2µ̄

∂x2
2

+
µ̄

4S2
T

∂2ST

∂x2
2

− µ̄

4S3
T

(
∂ST

∂x2

)2
]
·

3∑
j=1

Uj`j`2n̂j ·n̂2 +
(

1
µ̄

∂µ̄

∂x2
− 1
ST

∂ST

∂x2

)
∂φv2
∂x2

(56)

12 of 15

American Institute of Aeronautics and Astronautics Paper 99–3254



∂2φv2
∂y2

2

= − µ̄`
2
2

4ST

∂2U2

∂y2
2

+
(

µ̄

4S2
T

∂ST

∂y2
− 1

4ST

∂µ̄

∂y2

)
·[

`22
∂U2

∂y2
+ (y3 − y1)(U1 − U3)

]
+

[
1

4µ̄ST

(
∂µ̄

∂y2

)2

− 1
4ST

∂2µ̄

∂y2
2

+
µ̄

4S2
T

∂2ST

∂y2
2

− µ̄

4S3
T

(
∂ST

∂y2

)2
]
·

3∑
j=1

Uj`j`2n̂j ·n̂2 +
(

1
µ̄

∂µ̄

∂y2
− 1
ST

∂ST

∂y2

)
∂φv2
∂y2

(57)

∂2φv2
∂x2∂y2

= − µ̄`
2
2

4ST

∂2U2

∂x2∂y2
+
(

µ̄

4S2
T

∂ST

∂x2
− 1

4ST

∂µ̄

∂x2

)
·[

`22
∂U2

∂y2
+ (y3 − y1)(U1 − U3)

]
+
(

1
4µ̄ST

∂µ̄

∂x2

∂µ̄

∂y2

− 1
4ST

∂2µ̄

∂x2∂y2
+

µ̄

4S2
T

∂2ST

∂x2∂y2
− µ̄

4S3
T

∂ST

∂x2

∂ST

∂y2

)
·

3∑
j=1

Uj`j`2n̂j ·n̂2 +
(

1
µ̄

∂µ̄

∂y2
− 1
ST

∂ST

∂y2

)
∂φv2
∂x2

(58)

The derivatives of the cell-averaged diffusion coeffi-
cient scale like,

∂µ̄

∂x2
∼ 1

3
∂µ2

∂x2

∂2µ̄

∂x2
2

∼ 1
3
∂2µ2

∂x2
2

(59)

Dependent Variable
Evaluating ∂Ui

∂xi
directly from the high-resolution

non-linear fluctuation splitting scheme is impractical.
Limiters such as Minmod are not continuously differ-
entiable, and while the van Albada limiter is differen-
tiable its use does not lead to a convenient explicit
form from which to evaluate ∂Ui

∂xi
. As an approxi-

mation to ∂Ui
∂xi

for the non-linear scheme, derivatives
are sought using linear distribution schemes. Two
linear choices for fluctuation splitting are to use a
linearity preserving (second-order spatial accuracy),
non-monotonic distribution or an upwind, monotonic
first-order distribution. The linearity-preserving, non-
monotonic scheme is of the Lax-Wendroff type,33 and
tends to produce dispersion waves in response to nodal
displacements. This behavior tends to under-predict
the change in solution value at the perturbed node
relative to the fluctuation splitting scheme employed
herein.

The linear upwind scheme is obtained from the
present fluctuation splitting scheme by discarding the
limiter. This scheme exhibits a dependency on the
numbering of nodes within a triangle. To alleviate
this dependency, the approximation to ∂Ui

∂xi
is built by

looping over all cells connected to node i and locally
renumbering the nodes within each triangle so that
the current node is designated as node 2 of the trian-
gle. It is emphasized that the linear upwind scheme

is not used in the calculation of the solution, but only
employed to provide an estimate of the solution vari-
ation with respect to nodal displacements, providing
the forcing functions for the mesh adaption.

Assembling the linear upwind advective distribu-
tions with the diffusive contributions from the sur-
rounding cells and solving for the steady state value
of the current node yields, with U2 = Ui,

Ui
∑

T

(
α+ − β− +

µ̄`2i
4ST

)
=
∑

T

[
α+U1 − β−U3

− µ̄`i
4ST

(U1`1n̂1 + U3`3n̂3)·n̂i
]

(60)

where,

α± =
α± |α|

2
= α

1± sign(α)
2

β± =
β ± |β|

2
= β

1± sign(β)
2

(61)

The variation of the nodal solution with respect to
nodal displacement can now be evaluated as,

∂Ui
∂xi

∑
T

(
α+ − β− +

µ̄`22
4ST

)
=
∑

T

{
U1
∂α+

∂xi
− U3

∂β−

∂xi

− µ̄

4ST

[
`i

(
1
µ̄

∂µ̄

∂xi
− 1
ST

∂ST

∂xi

)
(U1`1n̂1 ·n̂i + U3`3n̂3 ·n̂i)

+ (x3 − x1)(U1 − U3)]} − Ui
∑

T

(
∂α+

∂xi
− ∂β−

∂xi

+
`2i

4ST

∂µ̄

∂xi
− `2i µ̄

4S2
T

∂ST

∂xi

)
(62)

Recall that the solution at surrounding nodes is held
fixed during displacements of the current node.

The derivatives of the functions in Eqn. 61 are de-
fined,

∂α+

∂x
=

{
0, α < 0
∂α
∂x , α ≥ 0

,
∂β−

∂x
=

{
∂β
∂x , β ≤ 0

0, β > 0
(63)

Further, Eqn. 10 leads to,

∂α

∂x2
=
Ãy

2
+

1
2
`1n̂1 ·

∂ ~̃A

∂x2
,
∂α

∂y2
=− Ã

x

2
+

1
2
`1n̂1 ·

∂ ~̃A

∂y2
(64)

∂β

∂x2
=
Ãy

2
− 1

2
`3n̂3 ·

∂ ~̃A

∂x2
,
∂β

∂y2
=− Ã

x

2
− 1

2
`3n̂3 ·

∂ ~̃A

∂y2
(65)

For non-linear problems a circular definition arises

for ∂Ui
∂xi

and ∂ ~̃A
∂xi

. One option is to neglect the deriva-

tives of ~̃A in Eqns. 64 and 65. Another option would
be to lag these same terms from the previous iteration
level.

The second derivatives of the solution at the current
node with respect to variations in the position of the
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current node can be developed from the first derivative
expression in Eqn. 62, again with the approximation
∂U1
∂x2
' ∂U3

∂x2
' 0,

∂2Ui
∂x2

i

∑
T

(
α+ − β− +

µ̄`2i
4ST

)
=

− Ui
∑

T

∂2

∂x2
i

(
α+β− +

µ̄`2i
4ST

)
+
∑

T

[
U1
∂2α+

∂x2
i

− U3
∂2β−

∂x2
i

− 2`i(U1 − U3)(x3 − x1)
∂

∂xi

(
µ̄

4ST

)]
− 2

∂Ui
∂xi

∑
T

∂

∂xi

(
α+ − β− +

µ̄`2i
4ST

)
(66)

∂2Ui
∂xi∂yi

∑
T

(
α+ − β− +

µ̄`2i
4ST

)
=

− Ui
∑

T

∂2

∂xi∂yi

(
α+ − β− +

µ̄`2i
4ST

)
− ∂Ui

∂xi

∑
T

∂

∂yi

(
α+ − β− +

µ̄`2i
4ST

)
+
∑

T

(
U1

∂2α+

∂xi∂yi
− U3

∂2β−

∂xi∂yi

)
−
∑

T

{`i(U1 − U3) ·[
(x3 − x1)

∂

∂yi

(
µ̄

4ST

)
+ (y3 − y1)

∂

∂xi

(
µ̄

4ST

)]}
− ∂Ui
∂yi

∑
T

∂

∂xi

(
α+ − β− +

µ̄`2i
4ST

)
(67)

The remaining derivatives to be specified follow from
Eqns. 64 and 65,

∂2α

∂x2
2

=
∂Ãy

∂x2
+

1
2
`1n̂1 ·

∂2 ~̃A

∂x2
2

(68)

∂2α

∂y2
2

= −∂Ã
x

∂y2
+

1
2
`1n̂1 ·

∂2 ~̃A

∂y2
2

(69)

∂2α

∂x2∂y2
=

1
2
∂Ãy

∂y2
− 1

2
∂Ãx

∂x2
+

1
2
`1n̂1 ·

∂2 ~̃A

∂x2∂y2
(70)

∂2β

∂x2
2

=
∂Ãy

∂x2
− 1

2
`3n̂3 ·

∂2 ~̃A

∂x2
2

(71)

∂2β

∂y2
2

= −∂Ã
x

∂y2
− 1

2
`3n̂3 ·

∂2 ~̃A

∂y2
2

(72)

∂2β

∂x2∂y2
=

1
2
∂Ãy

∂y2
− 1

2
∂Ãx

∂x2
− 1

2
`3n̂3 ·

∂2 ~̃A

∂x2∂y2
(73)
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Hohmeyer, M., Guèvremont, G., Peeters, M. G., and Germain,
P., “A 3-D Adaptive Anisotropic Method for External and In-
ternal Flows,” AIAA Paper 98–0771, Jan. 1998.

17Habashi, W. G., Dompierre, J., Bourgault, Y., Fortin, M.,
and Vallet, M.-G., “Certifiable Computational Fluid Dynamics
Through Mesh Optimization,” AIAA Journal , Vol. 36, No. 5,
May 1998, pp. 703–711.

18Zienkiewicz, O. C. and Zhu, J. Z., “The Superconver-
gent Patch Recovery and A Posteriori Error Estimates. Part 1:
The Recovery Technique,” International Journal for Numerical
Methods in Engineering, Vol. 33, 1992, pp. 1331–1364.

19Zienkiewicz, O. C. and Zhu, J. Z., “The Superconvergent
Patch Recovery and A Posteriori Error Estimates. Part 2: Error
Estimates and Adaptivity,” International Journal for Numeri-
cal Methods in Engineering, Vol. 33, 1992, pp. 1365–1382.

20Ait-Ali-Yahia, D., Habashi, W. G., and Tam, A., “A Di-
rectionally Adaptive Methodology using and Edge-Based Error
Estimate on Quadrilateral Grids,” International Journal for
Numerical Methods in Fluids, Vol. 23, 1996, pp. 673–690.

14 of 15

American Institute of Aeronautics and Astronautics Paper 99–3254



21Roe, P. L., “Fluctuation Splitting Schemes on Optimal
Grids,” AIAA Paper 97–2034, June 1997.

22Roe, P., “Compounded of Many Simples,” Barriers
and Challenges in Computational Fluid Dynamics, edited by
V. Venkatakrishnan et al, Kluwer Academic Publishers, 1998,
pp. 241–258.

23Spekreijse, S., “Multigrid Solution of Monotone Second-
Order Discretization of Hyperbolic Conservation Laws,” Math-
ematics of Computation, Vol. 49, 1987, pp. 135–155.

24Wood, W. A. and Kleb, W. L., “Diffusion Characteristics
of Finite Volume and Fluctuation Splitting Schemes,” Journal
of Computational Physics, (accepted for publication) 1999.

25Wood, W. A. and Kleb, W. L., “Diffusion Characteristics of
Upwind Schemes on Unstructured Triangulations,” AIAA Paper
98–2443, June 1998.

26Roe, P. L., “Characteristic-Based Schemes for the Euler
Equations,” Annual Review of Fluid Mechanics, Vol. 18, 1986,
pp. 337–365.

27Barth, T. J., “Aspects of Unstructured Grids and Finite-
Volume Solvers for the Euler and Navier-Stokes Equations,”
Computational Fluid Dynamics, No. 1994–04 in Lecture Series,
von Karman Institute for Fluid Dynamics, 1994.

28Sidilkover, D., “A Genuinely Multidimensional Upwind
Scheme and Efficient Multigrid Solver for the Compressible Eu-
ler Equations,” Report 94–84, ICASE, USA, Nov. 1994.

29Harten, A. and Hyman, J. M., “Self Adjusting Grid Meth-
ods for One-Dimensional Hyperbolic Conservation Laws,” Jour-
nal of Computational Physics, Vol. 50, 1983, pp. 235–269.
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